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ABSTRACT
25589

The effects of a sphere and then a cylinder sinking beneath the surface
of a fluid of uniform viscosity were examined. The state of the fluid at
the surface is described by the "horizontal features", the horizontal velocity
and the shear stress (vX and sz), and the '"vertical features", the vertical
velocity and the normal stress (vz and Fz). If the top surface is a free
surface, the depression h of the surface above the sinker is related to the
vertical force through the formula F; =fﬁ3h. It is found that FZ is independent
of the viscosity of the fluid and also of the boundary conditions of the top
surface -- a free surface or rigid plate give the same Fz. A two-layer model
in which a fluid of one viscosity lay over a fluid of another viscosity was
examined and it was found that Fz was relatively independent of the thickness
of the top layer or the ratio of the two viscosities -- especially if the
top layer had the greater viscosity.

The viscous model was then used to interpret oceanic trenches and mid-
ocean ridges. Whereas the horizontal features are very dependent upon the
assumed viscosity pattern, the vertical load Fz is not and we may find the
approximate mass of the sinker and its depth beneath the surface independent
of the viscosity pattern of the earth. The vertical surface load FZ was
related to the thickness of the crustal layers. The variations in the
crustal thickness give rise to gravity variations and these plus the attraction
of the deep sinker were interpreted as the net free air anomaly. The crustal
thickness (o&f;)and the free air anomaly computed for sinkers of different
sizes and depths were then compared to the measured free air anomalies and
seismic depths of the Puerto Rico Trench and Mid-Atlantic Ridge. In both of

these cases the driving mass had an optimum depth of about 100 kilgmeters.



In Puerto Rico the driving mass was very concentrated at this depth: it was
5% to 10% more dense than the average density at this depth. In the Mid-
Atlantic the mass was more diffuse: it was spread out over a horizontal
distance of several hundred kilometers and was about 1% 1less dense than

the average.



A VISCOUS MODEL OF THE EARTH
COMPARED TO GRAVITY ANOMALIES AND SEISMIC REFRACTION PROFILES

OF OCEANIC TRENCHES AND RIDGES.

l, Introduction

Runcorn (1964) has recently compared the shape of the
geoid as determined both from satellite observatlions and
surface measurements of the strength of gravity with the
topographic pattern of the mid-ocean rises. He has found a
correlation between lows in the geoid and the pattern of the
mid-ocean rises and he interprets both of these features as
manifestations of convection currents rising beneath the mid-
ocean rises. The order of magnitude of this efifect 1is correct;
by assuming a uniformly viscous earth with viscosityq:lo22
poise, he shows that geoid devartures of 60 meters and convec=-
tion velocities of 1 cm/year are compatable. Runcorn consid-
ered the global pattern of gravity highs and lows and the
global pattern of convection; in this paper the gravity field
surrounding a locz2lized convection pattern will be examined.

The Fennoscandia uplift (and similar uplifts in North
Americz) is generally assumed to be a readjustment of the earth
in response to a glacial load which has recently melted. It
has been assumed that the response of the crust has been governed
by the laws of viscous flow and thus a measurement of the earth's

022

viscosity has been made: the value 4 =1 to 1023 poises 1is

generally quoted. The following authors have considered the



Fennoscandia uplift: Haskell (1935), Vening-Meinez (1937),
Niskenen (1939), and Gutenberg (1941). Haskell found = 1 X 1022
polse, but Vening-Meinez shows an error 1in Haskell's assumptions
and getsh= 3 x 1022 poise. Nisgkanen and Gutenberg both arrive
at 3 x 1022 poise for Fennoscandia.

The following assumptions about the mechanics of the flow

are common to all of these analyses.

(1). The crust which floats on top of the "fluid" mantle
offers negligible resistance and passively follows
the surface motions of the underlying "fluid".

(2). Although elastic forces may have at one time been
important, only flow processes are important now.

(3). The flow is purely Newtonian viscous flow; i.e. the
flow rate 1s strictly proportional to the shear stress.

(4), The viscosity is constant at all depths.

(5). The material is incompressible.

(6). The inertial terms in the equations of motion may
be neglected compared to the term qé%ﬁ

(7). The curvature of the earth may be neglected and a
semi-infinite plane model used.

These assumptions are specifically listed since the same as-
sumptions will be used in the development of this paper. The
last three assumptions are readily Jjustified, but the first

four require discussion.



'The assumption of constancy of the viscosity is not very
good; a pattern of viscoslty versus depth such as that described
by Cook (1963) would be closer to reality. In the model described
by Cook the viscosity has a minimum value orders of magnitude
below its average value at a depth near 150 km. The evidence
in favor of such a "soft layer" was recently presented by
Elsasser (1964). The assumption of constant viscosity results
in large motions at great depths; in the uplift models described
above the vertical velocity at a depth of 1000 km (the diameter
of the depressed area) 1s roughly one-half of its surface value.
Vening-Meinez (1937) has investigated a model in which the
viscosity decreased exponentially with depth. He found (for
Fennoscandia) p = 3 x 1023 poise at the surface which decreased
tonh= 3 x 1022 at the core-mantle boundary. Takeuchi and
Hasegawa (1964) have considered a model in which a thin layer
of lower viscosity rests upon a fluid of much larger viscosity.
They found that if the top layer were 200 km thick with a vis-
cosity ofh =1 x 1022 polse, 1t would best fit the Fennoscandia
data, the data for Lake Bonneville, and the apparent lag in the
response of the earth's oblateness to the present length of day.
A model similar to Takeuchl and Hasegawa's 1is reported in
McConnel (1963). This assumption of constant viscosity places
a serious limitation on the applicability of the results to be
presented herg but for mathematical convenience this assumption

will be made.



A plastic model in which the stress and strain rate are not
strictly proportional would be preferable to the viscous model
(Orowan, 1964). One notable difference between plastic and
viscous behavior is the finite strength of the plastic medium
below which no flow will take place. This finite strength for
the upper mantle is commonly assumed to be of the order of 1lu
bars. We shall examine the specific model presented here to
see if this 10 bar minimum strength imposes a serious limitation
to this model. We shall find that this 1s not too serious over
a considerable volume. We shall assume that continental drift
with horizontal velocities of 1 cm/ yesr is a proven fact and
we shall find that the large density inhomogenelties required
in order to produce this drift rate will produce stresses in
excess of 10 bars.

The neglect of elastic forces is not very important. We
have essumed that appreciable flow has taken place and in this
case the elastic contribution is negligible. In the uplift
problem, the crust moved only vertically and because of the
large horizontal dimensions there was only a small amount of
stretching or compression. In the case to be considered here,
where large horizontal motions are permitted, the structure
of the crust will be more important in determining the pattern
of motion than in the uplift case, but for mathematical simpli-
city merely a thin layer "painted" on the top surface of the
fluid. We shall qualitatively consider the effects of a thicker

crust with strength when comparing the solution wlth observations.



The general equation of motion of a viscous fluid is:

yz ;—{,ig’ = ﬁ—' - TP +_3n‘v"(ﬁ-§) i
® ® ©, @ &
In this equation Z is the body force per unit mass, VP is the
pressure gradient, and 7 1is the coefficient of kinematic vis-
cosity (ﬂ::/?zv. For the conditlons which will be considered
here, term (i) 1s negligibly small compared to term (3), and
term (:) 1s small compared to term (:). The Reynolds number,
R = ﬁLvA7, may be calculated using a2 characteristic length of
100 km, a typicel velocity of 1 cm/year, and a viscosity of
7=3X 1022 poise. We find R = 10'22. The raetio of the in-
ertial forces to the viscous forces, the ratio of term (:) to
term (5), 1s always nearly equal to the RBeynolds number and so
the first term is completely negligible. This means we may
assume tnat the fluid instantaneously assumes a stea@ystate
pattern: the equailons are independent of time except for the
motion of the boundaries. The evolution of the motion may be
described by a sequence of steady state solutions. We may
compare term (:) to term (:) 1f we know how the pressure is
related to the change in volume, i.e. if we know an equation
of state. If we assume AP=—’<—A—\¥, then %IE = -k (TD)

since AV/V, the dialation, is equal to the divergence (of the

(1)

displacement) of the material. We may now examine terms (:) and (E}.
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If nis constant throughout, we may write the sum of these two
terms as F [ - %(v ‘v)], or S (" + % a_%’ .

The ratio 1 /k has the dimension of time, and for the values
h=3x 10%2 gm/cm/sec and k = 1012 dynes/cmz, T="/k equals

3 x 1010 sec or 1,000 years. Thus for times much longer than

a thousand years we may neglect term (&) (i.e. assune v °vV = 0)
and keep only term O. 'nis is physically interpreted by con-
sidering the problem of an ideal "sink" at which material is
anmmihilated at a constaent rate. The first response of the
neighboring material i1s to expand to fill this void but it
cannof continue to expand forever and after a while outside mat-
erial will begin to flow into this low pressure region. A steady
state flow of constant mass trensport across any closed surface
surrounding tne sink will cventually develop.

Thus we need only consider the simplified equation

'(\SE - 3P+v1v2§r’ =0 ()

which is valid for the slow velocities and large distances to be
considered and if we have constant viscosity. If we define
'é (X,752,) = ‘Fo(Z) +8F: (x,¥7,2) and R(x,y,z) =Wa(z) + p(X,y,z)
whereﬁo and Po are the average or "undlsturbed" density and
pressuré at depth z, we can subtract the "z" part awey and keep

only:
5e & -Jp +nv¥ = 0 (3)



2. A Particular Solution

Before proceeding to the genersl case, let us first consider
a particular problem in order to introduce the definitions and
method of approach. wWe consider the case of a hard sphere sinking
into a uniform viscous fluid.

Our first question is what need be the profile of the top
surface of the fluid in order to comvletely cancel the grevitational
attraction of the hard sphere in the space above the free surface?
(We ask this question because we shall find that part of the
solution for the profile of the depression produced by a sinking
aphere 1s exactly that required to cancel gravity.) This problen
has an analogy in electroststics --- what surface charge density
will accéumulate on a grounded conductor in order that zero volt-
age will be everywhere on the other side of the wall? This
problem may be solved by the method of images.

Consider the problem of a point charge q which 1s a dis-
tance D away from a plane wall conductor. what is the electro-
static potential &t each point in space? Imagine an image
charge -q situated a distance D on the other side of the wall
and remove the conducting wall. The potential at each point
in space is now #(x,y,z) = 1/4’"’5,(% + '%;). where ry(x,y,z) end
rz(x,y,z) are the distances between the point (X,y,z) and the
original and image charges respectively. At infinity and at
the plane of symmetry midway between the two charges the
potential is zero. At points very near the original charge the

potential approaches the point charge solution g = 1/4melq/n).



These boundary conditions are identical with thnse we require
for the point charge near the grounded conductor wall, and by
the uniqueness theorem in electrostatics the fields in region
A (see figure 1) must be the same for the two cases. The field
in A is really produced by the point charge and a surface charge
on the wall and we may find the magnitude of this surfaée charge

density at any point on the wall according to

E normal
€o

P _ -
Now consider a sphere of mass M = 40 ap o>  whose center
is a distance D from the plane z = 0, Imagine a sphere of mass
-M at a distance D above the plane. The gravitational field
strength at the plane z = 0 is normal to the plane and has strength:
= 2 7’42——T\m &M
(D™ + P D+ p3

In analogy with electrostatics, we may define a "surface mass

Q '
J rerwmag

density" according to 6 = - ;ﬁqa Fnormal ° Combining these

formulas we find that the required surface mass density is:

e
% (397 @) @Em W

This surface mass density may be related to the volumetric density
j5 and a depression of the surface h_ according to -% /? ha.

g
This is shown in figure 1. On the left are the mass and its

i

image and field in all space. On the right are the mass and

the surface mass density shown in formula (4). Below the

plane (region A), the field is the same as in figure 1 (a),

but above the plene (region B) the fleld 1s everywhere zero,

This means fhat a surface mass deficiency as given by formula (&)
Wwill cancel out the gravitational attraction of the sphere M

in the spsace above the surface.



region B region B

-surface charge
- 0 S|

- — et ed

region A

(a) (b)

Figure 1. (a) The field of two equal but opposite point
charges. (b) The tield of a point charge and a chosen surface
charge.

We now solve for the pressure and velocities produced by
a sphere sinking in a homogeneous viscous fluid. Consider the
case of a sphere of radius a falling in a medium in which qz is
zero. In reality the material surrounding the sinker would
change density as it was dragged downward and this instability
would further drive'the convection, but for the moment suppose
that all of the more dense material is included within the walls

of the sphere.
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-The problem of spheres (and ellipsoids) falling in viscous
media’is.considered in sections 335-339 of Lamb (1932) and we
need only apply these results to the case of the earth. The
only mathematical problem not already treated by Lamb is the L
effect of the free surface just above the falling sphere. |
Boundary conditions which closely approximate the free surface
and yet which still permit a simole analytic solution will be
chosen (an "image" type boundary condition) and the effects on
the falling sphere will be found.
We may find the orders of magnitudes involved by consldering
a sphere falling in an infinite medium. In an infinite medium,
the resisting force acting on a sphere of radius a and having

& velocity V 1is:

R = 6ema 7 \"4 (57

Equating this force to the buoyant force of the sphere, we have
2 ~

vV = ‘20—,3—7"" $p ()

If the radius of the sphere is 100 km and if the density is
1% of 3 gm/cmz, then the limiting velocity is .7 cm/year. The
time required for the sphere to sink 200 km (one diameter) 1is
30 million years. Neither a,cﬂE, nor * are known with any pre-
cislion, a factor of ten change up or down of any one of these
could be possible, but the combination chosen seems reasonsble
and the time scale of 30 m.y. 1s of the order of a mountain
building cycle. ‘

The velocities in the fluid induced by the bzll sinking
beneath a free surface as shown in figure 2(a) are closely

approximated by the velocities in the space below of figure 2(Db)
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(a)

e—— O —|

A ///— ball 2
RN

2b plane of symmetry
-
ball 1
(b)
Vv
Figure 2. (a) A ball near a free surface.

(b) Two balls in an infinite medium.
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in which two balls are receeding from one another in an infinite
medium. The plane of symmetry closely represents the free surface
as the vertical gradient in the horizontal veloclty vanishes here;
no tangential stressés are transmitted across this plane. The
symmetry plane also strictly requires that the vertical velocity
at the surface be zero and the surface be perfectly flat, but
these two differences between the image boundary conditions and
the actual free surface are negliglble as we shall see later.

Thus the problem of a ball near a free surface czn be reduced to
the simpler problem of two balls in an infinite medium.

To solve the two sphere problem, we may at first lgnore the
mutual interaction of the two spheres and represent the velocltles
for each ball alone in an infinite medium. 7Thls solutlion may be
improved by a pertubation correction as outlined below. For
simplicity suppose the top sphere, ball#2, is at rest and that
only ball#l is moving with velocity V. We have from the basic
equation of the motion in the fluid:
=r\V??s
=0

<y 'O

-’

<
P

<
2 _
Thus < p =0,

and p may be expanded in a series of spherical harmonics:

D =§pn ®
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Lamb (§335) shows how the velocity of the fluild may be found from
different gradients of pn's, the pressure, and ¢n's, arbitrary
functions which are used to satisfy the boundary conditions but
which do not have the same effect as pressure. Since the equations
identically satisfy Y;P = 0 and <gv = 0 at each point in the
fluid, the only problem is to match the boundary conditions. It

is very easy to have v, = U, Vo = 0, on the surface of ball 1,

and v, = Vo = 0 at infinity; this is Just the 35tokes' problem

and all of the p 's and #p's are zero except p_, and g oo

However this does not satisfy v,= Vo = 0 on the surface of ball #2.
We may move the origin of the coordinates to the center of ball #2,

find the small pn's and ¢n's that are needed to satisfy the con-

dition v, = Vo = 0 on the surface of this ball (that is find the

terms which cancél out the velocity at this surface predicted

by the original solution of ball #1), and superpose this addition

to the first solution. This satisfies~v2p= 0 throughout the

fluid and v, = Ve = 0 on the surface of ball "2 and at 00, but

it does not quite satisfy the boundary condition on the surface

of ball #1 since these new terms have a small effect on ball "1.

We may now return to ball #1 and find the terms which will cancel

the velocities on its surface predicted by the terms Just found

for #2 --- this process may be continued to any desired accuracy.
For the case where both spheres ar- moving apart, each with

velocity U, we find that the fluid velocity at each point 1s

given by (to second order in &a/D):
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D
Y - U l+-%:e + ——-e‘) i Q'E:
2 - }
'4'%'("‘:: [itos Q, —L]—e(rtv“-)}[lc_ose--‘-] 1)
VP - -U(’+-¢_ 4-.-— 1){(.((' - & )) [3 Q—OSQ,MQ.J
+ i (\" - z)} [3@391 MG;J

Lo g
and the pressure by *(to third order in a/D):

(G'vaa-h) 2
S [(rterge e[ Bwen + fcossy]

-%e’ | %[%cosa-ﬂ + —g—if%cose, - % J}]

In these formulas, r;, 8, rz, and 9, are defined as shown in
figure 3: these four quantities are always positive. Positive
V, 1s up and positive Ve 1s away from the axis of symmetry.
The quantity e is defined by e = a/D; if the two spheres are
touching, e = 1. The resisting force on either sphere is

(6muan) (1L ¢+ 3 e+ e+ +o) (9)

This resistance (equation ) agrees with the result of
H. Dahl reported in Berker (1963) or Faxen (1927). The problem
of two spneres falling alongside one another was of interest to
colloidal chemists. The mutual interactions of two spheres
having veloclities parallel to one another (or because of the
symmetry in the solution, velocities which are anti-parallel)
were considered, but only the formula for the resistance (and
hence limiting velocities) was published and not the pressures
and velocltles in the fluld nearby.

Thus the limiting velocity of a sphere of radius a, depth D
from the surface, and density éﬁ' greater than the fluid will

fall at the rate:
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Figure 3. Definitions of symbols.
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U = 2 y S

2 3o $F [ :
9 7 [+%e +Tqé_ez o (o)

The horizontal velocity of the fluid along the plane z

A = 0 1is
_ _ 3 aDp (D*+pad)
Pr= tE ppym Ullr de ]
[_,L 9 576'0.3] D p (D*+p0 - a*) ()
3 T 0 +p)%

The maximum horizontal veloclty occurs at aboutp =.7D and is

about v, = 6 (%

n) U. The pressure at the plane z = 0 is
3
= emran U 3 3 2 D
P(O,/O) = 4-TTD= [I+ e + e - ]{.(___M/o 3/2}
D
= - = 8p CL3 ] =3
[ g op (Dz+/0:)4 (1z)
The vertical force transmitted across a horizontal plane is in
general:
_ _ a _ _ - AN 4 ‘;Lr \ /'3\
F; - FD t 27 U} - P z2n ('%%x + 3y / v

Evaluating this we find (dropping terms in e%),

QUx o UL -
1 (37 35

3
2 q ¢ 3]{___,30 D § (4)
= - a ~2\5 - 3
[59% D+ p*)72 0PV
Thus the total vertical force (tension) at the surface may be

balanced by = depression of the surface Pghtotal end we have:
2 ~ 3 3 D
2 15
[338/°q] {(Di+,0‘)°7'-1} (152

There are sevarael notable features about these formulas.

Fz = /3- 3 h‘totql

First, F_(p) and p\O,/J) are entirely independent of the numer-

ical value of the viscosity (once 77 1s large enough so inertial
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terms may be omitted). 3econd, the formulas are relatively in-
dependent of the radius a of the sphere provided the density is
changed to keep the mass 40 @Fas constant. The pressure is in-
dependent to third order in e, the horizontal velocity is indep-
- endent to second order in e (the e2 term comes from the factor
(D? + p2 - a2), end the same o2 dependency appears in
and thus F,.
What quantities could be measured by observing the surface
of an ideal viscous fluid containing a sinking ball? From the
horizontal dependence of Fz and Vo 9 the depth Dcould be determined.
From the vertical load F, = /Zghtotal’ the product §5ce could be
determined and an estimate of the radius a made from likely values
of @5. Lastly, using the values for D and %5 a? sy the vis-
coslty 7 may be found from the magnitude of Vo o More inform-
ation may be obtalned if we observe the surface for a long
veriod of time; if the horizontal extent of the surface pattern
and thus D is observed at different times, then the limiting
velocity will be known since U = dD/dt.
Equation (10) then relates U to a different combination of 6/'5-,
a, and % than before, the factor %Bazappearing rather than Sf?a3.
We now come to a main point of thls paper, the relation
between the gravitational attraction of the mass beneath the
surface and the profile of the surface depression. Divide the
total depression into two varts; the part produced by the pres-

sure term and the part produced by the velocity term.
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htot(éf = I"'p(/o) * hv (P)

helP) {§ £ o’} [_(_5_,_0:/_07)_%] (16)
2 5 o° D D

h = 13 FC G (5'?1',6'*3’/:] (17)

Notice that the pressure term (equation 16) 1s identical to the
surface depression required to cancel out the gravitational
attraction of the sphere beneath the surface (equation ).

This identity, which will be proved in general in the next section,
depends upon having a medium in which viscosity 1s constant.
However this is still "partially true" for a viscosity which

varies with depth, as will be dlscussed in a later section.

We now examine the validity of our image method of sol-
ution. How valid is the approximation that two balls moving
apgrt fepresent one ball sinking beneatn a free surface? The
smaller the distence h (obtained from the relation F, = fgh)
is compared to the depth of the ball D, the better the results
calculated from the formulas above will represent the free

surface case. The depth of the depression is given by (equation 15):

05
- H =R
Mool o+ p™
where
3
- QS’F‘YQ>
H (,a' D?

If & = 100 km, D = 200 km, end. P

.01, we find that the

m, or 1/4% of the dlstance

(@]

maximum surface denression is H = 5.

D. This shows that the plane surfeace is a good approximation
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to the slightly wavy free surface and at the seme time the
height of roughly a kilometer 1is large enough to be téctoni-
cally interesting. [he symmetry of the two ball problem im-
poses that the plane surface z = 0 is & surface across which

no saear stresses are transmitted, and we may sztisfy ourselves
Vthat the free surface boundary conditions are closely met on
the plane z = 0.

The second question which arises concerns the possible
vertical motion of ths free surface with time, a possibility
waich is ruled out by symmetry in the two ball problem. We
may find how the time rate of H is related to dD/dt (dD/dt = U)
by differentiating the formula above, and we find that dH/dat
15 several orders of magnitude smaller than the limiting vel-
ocity or maximum horizontal velocity. we uay oe &ssured that
the image method of solution introduces no epvpreclable error

into the solution.
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3. A more general solution.

We assume that the viscosity 1is constant in all that
follows. We will first prove the identity betweean(x,y,O)
and g times Ga(x,y) for the plane case and then discuss the
case of spherical geometry.

Write the density of the fluid as the sum of two terms;

a term which depends only on depth and a term which represeﬁts

local departures from this average at each depth.

P

Alxy,z) = Az —+ é/a’(x,g,z)

Now the /E(z) produces no horizontal variations in the gravity

e s e e - s

Yo . man £ - P S
1 L geliclrave COLLVEeC L1OIL

ne sur
currents in the viscous fluild. (It may be in a situation of
unstable equilibrium but only until horizontal irregularities
start to occur , $4(x,y,z), will this be of any importance.)
Thus we may ignore )g(z) in the following discussion.

How do we calculate the gravity anomaly produced by the
éﬁB(x,y,z) beneath the surfaoce? Imagine a distribution of

image masses above the plane z = 0 such that:

85 (%, 9, -2) - 8F (%X,4,%) . (19)

We then calculate the gravitational field at the surface z = 0,

use q = i?;'é €normals and find the surface mass density which

will cancel the attraction of the mass irregularities below.

5 (x,y z) =z
9.0 = G”[ 2 (1,4, o
fX~x) 4 (Y"';})z-& zz}s/’- ¥ tx

oll space
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Because of our extension of Sﬁ into the upper half space ac-
cording to equation (18), this integral over all spaceris equl-
valent to twice the integral over the lower half gpace only.

Note that the above integral is equivalent to:

S(X,Y,O) = G ;Jj é/D (X/g,Z) 57 <{Q( )+(Y )422)29 JXJgJZ

all space

Define r = [ (x-x)* +(y-4) « 22}% . Then we have
I o -
G—G (Y,Y> = Z— [[f é/o é_ r)JxaﬂdJZ (Iq)

We now compute the pressure produced by thls density dis-
tribution. We use the method of images and imagine the upper
half space to be filled with a fluid of the same constant vis-
cosity 7 and with a density as already defined by equation (18)

in a uniform gravitational field pointing downwards. Thus we have

AV = Ve - 7

which is valid in all space, with # and g constant and S,a‘ with the
symmetry requirements expressed in equation (18). Now take the
divergence of all terms.

— 2 -~

V- (mv'7)

i
<l
I\

+
0
e
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The first term is zero since n 1s a constant and the divergence
of a curl is zero (VI - v(v.v)-uvxwx )., The vector g points
in the -z direction iny, so only derivatives with respect to

z are present here. Thus we have

vie = -9 5F

and from Poison's solution,

B > $p
p(X,YJZ) = 1%}[/‘528 a’xjga/z (ZO)

We now show that, except for a factor of g, the two integrals

in formulas (19) and (20) are identical when z = 0. Note that

Lo

~ 9§
L) = 3 (f) - SE (21)

57 r -

Integrate these three expressions over all space. The integral
on the left hand side is identieally zero since it is the integral

of an exact differential with end points equal to zero. Thus

W 6 % (7) dxdyd [ 2% dxdyd,

t——
all space all spece

n

and we have

P (X,Y/ o)

1l

q a; (XY) (22)

Compare this with the result found in the particular cese of

the rigid sphere sinking in the fluid. In the case of the hard



-23-

sphere we found that to the approximation considered p was

2 and hed only terms of e’ or higher

indepéndent of e and e
(e = a/D). See equations (12 and (8). Thus neglecting terms
of order e3, we had p-= g0 . Thls was solved assuming that
the sphere was perfectly rigid. Wwe see from the above that
‘this same relation holds (exactly) if the sphere is made up of
a material more dense than its surroundings but having the
same viscosity as the surrounding material. We further find
that no matter what the viscosity of a fluid bell (see Lamb
§337.2), the pressure outside the ball will not be changed if
the mass of the ball is kept the same, and so the relation

p = g0z 1s true irregardless of the viscosity of the sphere.
We have assumed a constant viscosity everywhere in deriving
this relation (eduation 21), but is8 this too restrictive a
condition? May'the viscosity change across discontinulties

in density? 1Is the less restrictive condition that surfaces
of constant %5 or constant velocity should coincide with
surfaces of constant? ? There is the suggestion that the in-
tegral which arises if 7 1is not constant, ﬂfijzzi}zﬂzL J*JSJ‘,
will vanish for certain viscosity-density patterns other than
377= 0, but the proef of this has not been found.

The case of spherical geometry was considered and the

relation p(a, 6, 4) = g, 05(@, #) was again found to be true

Af the strength of gravity increased linearly with the radlius.
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Such a gravity fileld, g.= (r/a) ggs corresponds to the field
inside a sphere of constant density. If g does not have thils
special dependence then there 1s an extra term in the equation
but we still have an‘"almost identity®. For the case where

the density excess is concentrated at a radius b (and the ap-
prooriately larger image mass deficiency is at radius r = az/b)

the additional term is proportional to the main term and we have

p(a,6,8) = 34 % (©8) (%-%) (23)

where p(a,8,4) is the pressure at the surface of the sphere of
radius a produced by the disturbance at r = b and its image,
aa(e,¢) is the surface mass layer needed to exactly cancel
the gravitational»field produced by the mass excess at r = b,
and gy, and gg are the strength of gravity at the surface of
the sphere and the strength at radius b. The angular depend-
ence of p(a,0,4) and O (6,4) are proportional in this case
but the magnitudes are differeﬁt from that given earlier by
the ratio (gba/gab). In the case of the earth where g 1is
approximately constant in the mantle, if a density excess 1is
located 300 km, beneath the surface, the depression of the
surface produced by the pressure term 1is 5% larger than that
required to cancel the gravitational field of the density
excess. The proof of the statements made above is not shown;
this proof depended upon having & fluid with constant viscosity

throughout.



-25-

4. Non-Uniform Viscosity

We shall see in this section that the vertical surface load Fz

(or F gh 1) is relatively independent of the assumed horizontal layering

tota
of viscosity for a given density distribution. This "vertical feature'" and
the value of the free air anomaly which is derived from the difference
between the attractions of the mass at the surface and the mass below will

be independent of the layering; the "horizontal features'", such as the hor-
izontal velocity at the surface or the shear stress at the surface 1if there

is not a free surface, will be critically dependent upon the assumed layering.
This means that dividing the total surface load into two parté, a "p" part
and a "v'" part, has a certain artificiality; each of these two parts does

not preserve its identity as the viscosity is changed from uniform to a
layered model whereas the sum of the two is relatively unchanged as we vary
the viscosity. Nevertheless there are two points we wish to make concerning
the "p" part and "v" part before proceeding to the equations with non-
uniform viscosity.

The integral of ﬁlq over the entire surface must be equal to the

total
mass of the sphere or other shaped object below no matter how the viscosity
varies vertically or horizontally. This is because in order to have an
equilibrium situation for the longest wavelengths in this semi-infinite
half space, we must have an equality between the total downward body force
and the upward surface force. Second, the integral of ?hv over the
surface will be zero regardless of the viscosity pattern below the surface
if only the viscosity of the very top layer is constant. We see this from

the following equations; the sgcond equation arises by assuming 7 is

constant over the surface and by replacing 3Yz by using the relation vV = o,
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J[ P3hpor pdede = [ 2R [ FR] e de
f@

= (0
The last integral vanishes identically if Vo 1is zero at infinity. Sub-
tracting the integral of i?hv (= zero) from the integral of f;h total’
-we see that the integral of }ﬂy, over the surface is equal to the total
mass below. Thus the relation proven for uniform viscosity, Og (x,y) =
F’(¥'3:0)//3 s still has some validity since the equality of the
"pressure" surface mass deficiency and the mass excess of the sinker will
cause the gravitational field of these two to partially cancel each other.
This cancellation will not be perfect as in the uniform viscosity case; the
surface profile will not have exactly the correct shape (proportional to
l/(D2 + /91 y¥2 in the case of a spherical sinker).
In the uniform §iscosity case, the free air anomaly at a point was

proportional to ]S;R,(X,g) since the attraction of .§ kp and the

mass below canceled out.

~ - o
f)kv('x,‘j) = 2n —ayzz (x)‘.ﬂlo)

I

9+ (%, 4) X dy

In the case of a trench or a mid-ocean ridge, we may choose the axes so

that there is no y dependence,
— 4 TG 2 Vx
I¢ (X1 = ( 9 ) 1 QX

and if we integrate this along a line perpendicular to the trench we have

9 _
-2wGph, = (“—g"—@')?z("—"n?_‘ia) (24)

© .
J 3+(x) dx = (1%—@') n [\4(1) - V@ (25)
0]
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The integral of the free air anomaly across the trench should be equal to

a constant times the viscosity times the difference in the horizontal
velocity of the two sides. The value of this integral across the Puerto
Rico Trench was -31,000 mgal*km and across the Mid-Atlantic Ridge near 35°N,
+ 37,000 mgal® km. Convefting these numbers to cm2/sec2 and choosing
n=3x 1022 poise, we find that the two sides of the Puerto Rico Trench
‘are approaching one another at the rate of 3.5 cm/year and that the opposite
sides of the Mid-Atlantic Ridge are drifting apart at the rate of 4.4 cm/
year. Such an agreement between the traditional value of viscosity and

the egpected rates of continental drift is intriguing; but the numbers
above are without significance. First, the integral fa‘_ dx depends crit-
ically on whether the free air gravity values are generally high or low in
this region of the world. Puerto Rico is in an area where the readings are
generally low (the geoid is depressed in the Caribbean and western Atlantic)
and the North Atlantic is a region where gravity is generally high (the
geoid is elevated in the North Atlantic). We assume here that such large
scale regional differences in gravity, which are usually expressed as dis-
tortions of the geoid, have a different origin than the trenches and rises.
Perhaps these distortions arise from convection much deeper in the mantie,
but we consider that the two problems should not be mixed. Gravity line
integrals across the Mid-Atlantic Ridge in the equatorial region have a
zero net value and some profiles across trenches have a net positive value
(e.g. Tonga Trench). Thus these gravity line integrals would have little
value unless a regional average could be subtracted out. Second, this
"horizontal featu;e" is very dependent on the assumed layering of the

viscosity and the relation shown in equations (24) and (25) is true only for
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the uniform viscosity case. That is the horizontal velocity of the surface

is critically dependent on 7 (z) whereas the free air anomaly from which the

integral is made changes very little for different forms of 71 (z). In fact

from the equality of the surface mass and the mass beneath the surface, the
net integral of B¢ shouldvalways be zero except for the effects of the
regional average of gs as shown by a depression or elevation of the geoid.
The trenches and rises with which we shall compare our model have a
two dimensional symmetry appropriate to a cylinder sinking beneath the
surface. There are two ways we may arrive at the formulas giving the
surface features produced by a cylinder sinking beneath the surface of a
fluid of uniform viscosity. One 1s to begin with the expressions for a
single cylinder in an infinite medium (Lamb, §343) and proceed analogous to
the method used previously for the sphere. The second is to integrate
equations (11), (12), and (15) for a series of point sources spread con-
tinuously along a liﬁe. Either way, the formulas for the surface effects

of a cylindrical sinker are:

pP(YX,0) = (ML 1 D”
) Dz+ xz
a
- - av - D v
Féz (X,0) = p+2am z = < m:)‘
- DX
Vx (%) (zﬁrn> D+ X?

In these formulas for the pressure, vertical load, and horizontal velocity
at the surface z = 0, x is the horizontal distance along the surface from

a point above the cylinder, M, is the mass per unit length, and D is the

L

depth beneath the surface of the center of the cylinder. The surface mass

layer required to cancel the gravitational field produced by the mass excess

(26)
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of the cylinder is proportional to the pressure at the surface, oa = pPo)/9 >

and so the net free air anomaly in the uniform case is

. _ 2GM p* (0*-x") 27
3-FCX) - ——6——-‘ <Da+xt )‘L ( )

We shall solve the two layer problem using a fourier expansion.

We
begin here with the fourier expansion of the one layer problem. Consider
only the half space z £ 0. Then since Vzp = 0, we may choose

KZ
P, = P(k) cee kx e )
- (2 8)
pP(X,2) = f P, dk .
o

There could also be a term in Py proportional to sin(kx)ekz but we eliminate

2 >
this odd term for convenience. Using the relations 7 VzV = f].P and V-V: o,

k
Vok = P k) (CLK—l—kZ)eszx .
27 K
(29)
ZK Zﬁﬂ p ( bk )

We shall also want F__ P+ 27N azz and Fyz n(Y=z , x)_

dX 7
Fxzk = - Py (ay + kz}ekzm Kx

. (30)
Fzzk = - P () <bK - kl)e oo kx

These are the general forms for the expressions for the velocities and

stresses compatible with the pressure as given by equation (28). These
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equations suppose that there is no mass inhomogeneity within the half space
z £ 0; they were derived for V‘p = O. We may find the effects of a
source within the medium by supposing we have a single mass discontinuity

of mass per unit length M.L at z = -D in an infinite uniform medium. Then

we have :
P _ Mz—’“fg- e_k(z+D) coa kx
Vek = gr—;—zg;( [k(Z+D)] e_K(?m) 2o, Kx
Vzx = 4174& LI+ K(Z"'D)} k<z+D)C‘0°'-k" (31
Foax = - ."2:11_3 [K(Z+D)] E—K(zm),w'/n K x
Frax = .__3-[ + l<(z+D)] e ) o Kkx

Adding the general terms to these and evaluating at z = 0,

P, = § %‘ﬁ_ﬂ e "L a « zg} Coa kX
| M, -kD .
ek = g § - Q} ek
l -kD
Vg = Znk éJhQ;T (+kD)e — B} Cea kx (52)
Fyzk -9 (kD) e al in ke
Fazzk = { ML3(1+I<D)Q E (B} coa KX

We have renamed the combinations p(k)- a = CQK and p(k)-bK = Bk _
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If z = 0 is a free surface, we must require‘vz(x,O) and sz(x,O) to
be zero for all values of x. This determines the values of &, and B,
and thus Fzz(x,O) and vx(x,O). But suppose that we let z = O be a rigid
plate with v, and Vo equal to zero instead. Notice that the value of F;l.(X,O)
is unchanged by these new boundary conditions: the value of Fzz(x,O) is
the same for both the free surface and the flat plate boundaries. This
is shown symbolically in figure 4. In (a) we have the conditions for a
free surface (Vz and sz =0, v and Fzz # 0). In 4(b) we have the
conditions for a flat plate boundary (vx and v, = 0, F . and sz:¢ 0),
but note that v, and Fzz are identical to the shapes of v, and Fzz in
4(a) above. If we had retained the odd part of p, in equation (28), the
part that contains a sin(kx) term, then we could satisfy boundary conditions
as are shown in figure 4(c). We have the conditions for a free surface for
all x less than zero and the conditions for a flat plate for x greater than
zero. Yet Fzz and v, are the same as in (a) and (b). This has great sig-
nificance to the problem at hand. We see that the effects of a rigid crust
are insignificant if we are interested in Fzz’ although these are important
if we wish to know Ve

We have just used Fzz(x,O) = 0 and vz(x,O) = 0 as the boundary con&itions
for a free surface at z = 0. These are really the exact boundary conditions
for two cylinders ﬁoving symmetrically apart, but as we have seen before they
are a very good approiimation to the free surface.

We shall now find the fourier expansion for a layer rather than a half
space. For simplicity suppose there is symmetry about the x axis and that
we are interested 1n the region -d £Z 4 +d with symmetry about z = 0. We
shall have no mass sources within this layer, all of the sources are in the

half space below, and so we find:
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(a) (b) (c)

Vy (x,0) ~—— ——

Fyz (%,0) ' \N_—

'V, (x,0)

F}z (x,0) ==:””‘-\\‘%:== :::””—_~\\\‘E== =:"/’f‘-\\\——-

FREE SURFACE RIGID PLATE MIXED

Figure 4. Symbolic diagram showing the independence of
F,(x) upon the choice of boundary conditions at the surface.

f— Q.

Jr_ " "

Figure 5. Geometry of the two layer problem.
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Pr = o (K) (C»OQJ’LkZ) coQe kx
VXK = - P(k) (kz A—Uﬂij'L + QKC‘O‘J“(Z> L L’X
ik = - B (kg cosh k2 + by dirk kz) cot kx
it (33)
Froc = - P00 (k2 cooh kz + ay ok kz)oin kx
Fep k= = P(K) (—kz Mﬂ,kz + bKCodp\kz)Co—Qkx.
Examine the geometry as shown in figure 5. We must match Ver Vo E;z,
and sz on the surface z = -d. Combining equations (32) and (33) we have
%or F_ on the surface z = 0:
zz
F, (%,0) = Jf{ cex kx dk |
o
where
M ~ k(D-d) (34
Fo- Mse |+ k(D-d) +
RS+ C
| — kD + k(p-d) BEES
kd |+ —xd (1-R®
(RS +C)X(Rc+3)

We have let R = M/, , C = coah kol , ond S= oink kd.
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3

The vertical load F,(x) above a sinking cylinder computed

with the two-layer model for various ratios of the viscosity (R =17, /;)
and various ratios of the thickness of the top layer d to the depth
of the cylinder D.
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This equation was integrated numerically for different combinations
of the ratios R = KU‘«‘ and d/D. The resulting curves of Fzz(x) are shown
in figure 6. In the top part of this figure the ratio d/D was kept at 1/10
and the parameter R was varied. Note that the curve Fzz(xb is independent
of any particular value of ¥, and that the area under each curve is constant
(proportional to MI?. The curves tend to peak up at x = 0 as the viscosity
.on top increases and there is a limiting shape of Fzz(x) as the ratio R
approaches zero. There is no limiting shape of Fzz as the viscosity on top
decreases -- the surface load spreads out thinner over a larger area. In
the bottom part of this figure the viscosity ratio R = n’/%t'was kept at
R = 1/10 and the ratio d/D varied. The curve Fzz(x) seems to be bounded for
any choice of d/D.

Since Fzz(x) is independent of any particular value of the viscosity and
since the shape of Fzz(x) iz relatively independent of the vertical distribu-
tion of viscosity (aﬁ least if 7 increases towards the surface), we may find
the mass below which produces a given surface load with a minimum of knowledge
about the viscosity of the upper mantle. We shall originally assume that
Fzz(x) has the shape as given in the uniform viscosity case and later shall
suppose it has the more peaked up shape of a case in which there is a thick

top layer of much greater viscosity than below.
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5. Comparison with Observation.

A basic feature of the viscous model is that the ocean trenches are
produced by a large mass sinking deeper into the mantle many tens of kilo-
meters beneath the trench and that the mid-ocean rises are produced by
lighter material rising beneath the rises. In this section two such regions
of the earth, the Puerto Rico Trench and the Mid-Atlantic Ridge, will be
compared to the predictions of the viscous model. |

ﬁe have seen that the "horizontal features'" of the surface, such as
the horizontal rate of drift at the surface, are critically dependent on
the assumed layering of the viscosity of the mantle. However the "vertical
features", such as the vertical surface load or the gravity anomaly, were
shown to be relatively independent of the particular viscosity layering
chosen. Because of this insensitivity, the results of tﬁe simple uniform
viscosity model may be considered to be a good first approximation to the
more exact solution.

There are three types of data with which we may compare the theory.

The first is the "subcrustal gravity anomaly", g Suppose that the free
air anomaly is known. Further suppose that the crustal structure is known --
i.e. the depth to each interface and the density of each layer. We may use
the simple flat plate approximation to compute the gravitational attraction
of these crustal layers, g (x) = {ZTTG (,‘5, ah,0n + IZJ;AL':& W + )-
constan%}' We then determine the gravity anomaly produced by masses deep
within the mantle by taking the difference between the measured free air
value and the accounted for, crustal, value: gs(x) = gf(x) - gc(x). In
the mid-oceanic areas, this subcrustal anomaly will be very similar to the

Bouger anomaly since the free air anomaly is almost zero and most of the
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crustal effect will be due to the water-basement interface. If the crustal
structure is known so that gs(x) can be determined, then there is a powerful
constraint on the form which the mass distribution below the crust may assume.
One other constraint, such as specifying that the mass inhomogeneities all occur
within a layer a specifiéd distance down, is all that is needed to determine a
definite density pattern for the deeper mass. The inferences derived from the
quantity 8 have the great advantage that they are independent of the partic-
ular plastic or viscous model used -- gravity depends only upon mass distribu-
tions and not the rheological properties of the medium.

A second quantity which will be used is the '"'vertical surface load", Fz.
This quantity also requires a knowledge of the crustal structure before it
can be calculated. The load of a mountain or island is distributed over its
entire base area, but we shall ignore this spreading effect and compute Fz
at a point by summing the weight of all of the masses above it: Fz =
{(/-0:3 ah, o0 + Pg ‘3.“‘1100 + - ) — constant } . This quantity
is proportional to the crustal gravitational attraction gc defined before, and
again an arbitrary constant has been removed in order to make this quantity
equal to zero at distances far from the trench or rise. The simple viscous
model predicts the Fz resulting from a given density distribution in thé
mantle. Thus for a known Fz, we may again infer upon the mass distribution
beneath the surface, but this time our inference does depend upon the validity
of the simple viscousbmodel.

There is a third measured quantity which will be used in the comparison,
the free air anomaly, B¢ The viscous model predicts the form of the surface
load Fz which manifests itself in the form of density differences in the crust.

The gravitational attraction of the crustal density variations, 8. plus the
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attraction of the driving mass deep within the mantle combine to form the
net gravity field, 8g- Again we may infer what the distribution of mass
beneath the surface is from a surface measurement; agaih the accuracy of our
inference depends upon the reliability of the simple viscous model.

The three quantitiesvgs, Fz, and g¢ are not independent. The subcrustal
gravity anomaly 8 has special significance in that it is independent of the
viscous or other model chosen. The free air anomaly'gf has the advantage that
no knowledge of the crustal structure is required, only a surface gravity
profile. The quantity Fz is redundant. It can be obtained from the differ-
ence of the other two quantities, but it will be retained because of its
direct physical interpretation. We shall later modify the viscous model to
better account for all data and this modification is best interpreted as a
change in the shape of the Fz(x) produced by each piece of mass beneath the
surface. We shall be interested only in surface profiles perpendicular to
long trenches or rises and in this two-dimensional geometry the three
quantities of interest are related to the mass beneath the crust according to:

2

2G Mo D
C = S —_—
Is x) D D*+ x*

‘r
F. (X) = - 2gM. D (35)
‘ | T D (0*+x*)"
g. () = - 2G M. D* (D*-X")
'F D (D2+X7.)7.

The vertical load Fz is positive for a compression. The quantity Fzz which

was used before was positive for tension, i.e. Fzz= -Fz. The quantity ML is

the mass per unit length at a distance D beneath the surface; x is the
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horizontal distance along the surface measured from the point directly above
the mass ML' The G and g are the Newtonian gravitational constant and the
acceleration of gravity respectively.

We shall call the predictions made by equations (35) above the predic-
tions of the "simple viscous model." The basic assumptions of this model are
that the mantle has a uniform viscosity and the surface load manifests itself
as a thin layer of different density at the surface.

The Puerto Rico Trench is one of the most thoroughly studied regions of
the earth with closely spaced gravity stations and a large number of seismic
refraction lines which give the depths to different discontinuities in the
crust. A north-south profile across Puerto Rico showing the seismic refrac-
tion and gravity data is reproduced in figure 7. A map showing the location
of the seismic lines in relation to the gravity profile is shown in figure 8.
These figures ére from Talwani, Sutton, and Worzel (1959).

Talwani, Sutton, and Worzel have interpreted this data in the following
way. The seismic data was used to determine the depths to all of the crustal
interfaces, and an experimental velocity-density relation was used to assign
a density to each of these upper layers. They then assumed that the lowest
crustal layer, the layer in which the 7.0 km/sec velocity was measured, has
a uniform density of 3.0 gm/cm3, and that all material below the Mohorivicic
discontinuity has a density of 3.4 gm/cm3. With these restraints (and with
knowledge of the depth to the Moho at one point on the outer ridge) only one
unknown remains; the profile of the F = 3.0 and /3 = 3.4 gm/cm3 interface.
The gravity effects of the upper, known, layers were computed and then this
unknown profile, which they call M, was adjusted so that the total computed
gravity anomaly agrees with the measured gravity anomaly. The dots in the

lower part of figure 7 are the gravity measurements, and the solid line is
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the gravity computed using the crustal structure shown in the upper part of
this figure. Near the edges of the figure the interface M agrees with the
seismic refraction data, but remember that one depth had to be fed into the
model since the gravity data alone is quite insensitive to the depth on any
large flat layer. In the region where M undergoes large changes, from about
-100 km to +200 km, there is only one seismic data point, line #20 which was
.measured more than 100 km off to the east of this profile. (Distances are

to be measured north from latitude 18° N.) See figure 8. The significance
of line #20 will be discussed later in comnnection with the Moho profile shown
in figure 12,

Talwani, Sutton, and Worzel's interpretation of the gravity and seismic
refraction data near Puerto Rico is the only sensible interpretation if there
are no density variations in the material beneath the Moho. But even though
such a structure of depths to interfaces and density of layers will account
for the observed seismic and gravity data, there still remains a serious
problem of dynamic instability. If this gravity low is produced by having
light crustal materials extending down to roughly 20 km beneath the surface
as shown in figure 7, then there are tremendous forces which will try to lift
the trench floor until an equilibrium situation is reached and the trench no
longer exists. That is, although the structure shown in figure 7 will explain
the observed gravity and seismic data, such a structure is possible only if
the trench floor and surrounding regions are rising rapidly, say at a few
ém/year, or if the crustal and mantle rocks have a very great strength. For
an idea of the magnitude of the stresses involved, consider the following
schematic representation of this region. Suppose the Puerto Rico gravity
anomaly is produced by a long prism beneath the surface-with a width,w, of

100 km and a height,h, of 10 km. Suppose that the free air anomaly is zero
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except right over this prism where it is -250 mgal. Using the simple formula

33 = 21TG{2§L\ ;, we find that the density deficiency of this prism should

be A'F- -.6 gm/cm3. This plug must be held down by a tension oh the bottom
surface or a shear on the two exterior sides (cylindrical geometry). Matching
the excess surface forces with the excess body force we have: Tw + 2S5h = Athg.
If we suppose that the tension and the shear stress are equal, then we find

that T = S = 500 bars. A stress of this magnitude is at the limit of what

rocks can withstand.

va we remove the constraint that the density below the Moho has no
inhomogeneities, then the problem no longer has a unique solution. But if
we suppose thaﬁ many tens of kilometers below the gravity low there is a
heavy mass which is slowly sinking deeper into the mantle, then we have a
mechanism which preserves the gravity low at the surface for millions of
years rather than with a time scale of tens of thousands of years as in the
case of Fennoscandia or Lake Bonneville. Once the dimensions of the large
subterranean mass are decided upon as required to keep the profile of the
trench in a steady state equilibrium, then the profile of the Moho can be
uniquely chosen in order to match the measured gravity anomaly, if indeed a
sharp Mohorivicic discontinuity does occur beneath trenches. The relation
between the steady state pattern of the surface and the dimensions of the
"sinker" will depend on the relationship between strain rate and stress, but
for simplicity assume that the simple viscous relation is true.

There is an asymmetry in the gravity profile of the Puerto Rico Trench --
such an asymmetry is present in all trenches -- and the correct solution
should probably include an asymmetric convective motion slanting downward
under Puerto Rico from the Atlantic toward deep under tﬁe Caribbean. However

we may remove most of the asymmetry of the trench by considering that the
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total observed gravity profile is the sum of two parts: a part produced by
an island in isostatic equilibrium plus the effects of the trench. See figure
9.

An island in isostatic equilibrium has a gravity profile similar to that
shown in figure 9bl Directly over the island, the gravity anomaly is very
positive since there is much more rock and less water beneath the surface
than elsewhere in the ocean. But if the island has existed a long time and
is in isostatic equilibrium, then there must be a large "root" of less dense
material beneath it in order that the island plus root can float like an
iceberg in the denser mantle. This root is the cause of the lower than normal
gravity anomaly in the seas adjacent to the island. Isostatic equilibrium
is achieved when the integral of the free air gravity anomaly over the entire
area is zero. Over a small area isostatic equilibrium does not occur because
of the strength of the crustal material, but over areas of a radius of
roughly 100 km this isostatic equilibrium is the general rule -- the most
important exceptions to this rule are the trenches. 1In the usual example of
one island in the middle of the ocean (radial symmetry), the island has a
large positive 8¢ and the surrounding seas have a small negative Bg- However
Puerto Rico has a two dimensional symmetry, the Virgin Islands on the east
and Hispaniola on the west rise essentially the same height from the ocean
floor as does Puerto Rico, and in this geometry the line integral of gf(x)
integrated along any straight line crossing the island should have a net
value of zero.

The assumed "isostatic island" shown in figure 9b) was obtained in the
following manner. The gravity measurements listed in table 2 of Talwani,
Sutton, and Worzel (1959) were used with the exception of minor changes in

the values for the land stations. The values measured on land were changed



-45-

400 300 200 100 0 ~100 -200 km
¥ 1 ] ¥ ¥ L} 1
100}
3 O
~ -100}
6’— .
-200} TOTAL

-300}

ISOSTATIC
ISLAND

100

¥

gt (mgal)

. OF—= —
= |
2 ~100F TRENCH
= ol ONLY
o
-300}

Figure 9. The free air anomaly of Puerto Rico decomposed
into two parts: a symmetrical "isostatic island" and the
remaining "trench only".
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to free air values using the heights and dénsity given by Talwani, Sutton

and Worzel‘instead of the simple Bouger values tabulated in table 2. These
gravity values, which were measured at irregular intervals along the profile,
were then converted into values spaced every 10 km by interpolation. The
accuracy of the measurements is so good that a linear interpolation between
the adjacent measurements was quite sufficient -- an exception to this rule
-was made for the value at +50 km where three values were used to graphically
determine the value of gf@50). This equispaced data was then used in all
computations rather than the 6riginal data. This data is shown in figure 9a)
The negative area between -35 km and -180 km was then found: -6010 mgal-km.
The positive area under the island north of -35 km was summed until the total
area was +6010 mgal-km: this value was reached at the distance +22 km. The
distance +22 km was then chosen as a line of symmetry and a mirror image of
the values of B¢ south of the line was "reflected" to the north. The resulting
curve is shown in figure 9b). Curve 9c) was constructed by subtracting 9b) from
9. The manner of choosing 9b) is responsible for the zeros between +20 km

to -180 km; a more sophisticated manner of choosing9(b) could shift the right
haﬂd side of 9¢)a bit to more nearly match the left hand side of the trench,
but the uncertainties of this method don't warrant more than a simple tfeat-
ment.

This separatibn of the gravity profile into two parts, a part by an
"{sostatic island" and a part by the“trench alone? enables us to ignore the
complicating effects of the island. A complete theory of trenches would have
to consider the neighboring islands: such islands are an intimate part of
every trench. But such a theory would have to be evolutionary showing how
the island slowly accreted until it reached its present size. Our less

ambitious goal here is to recognize the existence of an island at present,
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but to ignore how it came to be. We are iﬂterested only in the possible
convective motions now in action which produce the present trench. However
we may'noté that the total volume of crustal rocks beneath the trench and
island are comparable to the volume which would be carried there if 1500 km
of ocean floor had been drawn down into the trench and then deposited under
Puerto Rico. If the ocean bottom drifted at the rate of 1 cm/yr, this would
correspond to a time of 150 million years. Using the bottom profiles shown
in figure 12 between the horizontal distances of +300 km and -100 km, the
volume of rock of density 2.7 gm/cm3 is 1920 ka(x 1 cm) and of density

3.0 gm/cm3, 7850 km2 ( x1cm). Assuming 5.5 km, 7.0 km, and 11.5 km to be
the appropriate dividing lines in a typical ocean, we compute that a strip
of ocean 1500 km long would have a total volume of lighter and heavier
crustal rocks of 2250 km2 (x 1 cm) and 6750 km2 (x 1 cm). respectively. Thus
we see how the simple model to be presented here might be extended into an
evolutionary model.

Figure 10 shows the free air anomaly of the "trench only" of figure 9%)
together with two theoretical free air curves drawn using formula (35). The
theoretical curves were computed for a cylindrical object sinking straight
down beneath +170 km. The magnitudes and the widths of the theoretical
curves were adjusted by changing the mass per unit length, ML, and the depth,
D, of the sinker., The two curves, which correspond to sinkers at 80 km.and
90 km, show how well this three parameter theory agrees with the data (two
parameter once the line of symmetry is chosen) and show approximate limits
as to how much these parameters may be varied. I consider the D = 80 curve
to be the better fit: the difference between this curve and the "trench
only" curve is rouéhly a constant 20 mgal. and this constant offset could be

caused by another, more general, feature. We have previously seen (section
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4) that with any pattern of viscosity the tbtal mass deficit on the surface
equals the mass excess below. This must be so in order that there is no
motion invélving the longest wavelength. The negative part of 8¢ just over
the sinker is produced mainly by the viscous response to the sinking object
and the shape of this part of the curve could be changed if the simple viscous
relation were not valid, but the positive part of gg On each side is produced
by the gravitational attraction of the excess mass of the sinker. If the
material has a finite strength (plastic) or if there are complicating features
100 km down which limit the sinking velocity in some way, these could only
reduce the magnitude of the mass deficit on the surface. But less surface
mass deficit, or more surface load, could only make the net line integral
of 8¢ positive instead of zero. Any conceivable plastic or elastic change
should only make the "wings" of the "trénch only" curve more positive than is
observed. The conclusion is that this area of the globe -- the.Caribbean and
Western Atlantic -- must have an average value of 8¢ which is less (by about
20 mgal) than standard. Indeed we observe that the geoid is depressed by
about 10 meters in this region. (Kaula, 1964)

For the curve with D = 80 km we find that the mass per unit length of

the sinking cylinder is M, = 1.7 x 1013 gm/cm. If this mass excess is in

L
a cylinder with a 40 km radius, the average excesé density of the cylinder
is ‘AF = .34 gm/cm;, or 107, more than the average density of the upper
mantle. We suppose that the sinker is much cooler than its surroundings
since it has been brought down from the cooler top layers of the earth. The
heating of this large blob by conduction or radiation transfer from the
surrounding material would be a very slow process (see below) and the amount

of heating caused by the adiabatic compression is negligible. For an order

of magnitude estimate of the time required for a cylinder of radius 50 km
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to heat up to an appreciable fraction of the temperature of its surroundings,

consider the following simple argument. The equation for heat diffusion is
v2 T = —-—k—— ,9._’-]:
PCp 3%

istic time, ,. Using a=50 km, ﬁ- 3.3 gm/cm3, cp = ,2 cal/gm°C, and

2
k = .006 cal/cm°Csec; we find that this characteristic time is t = Ko _
c 2 Cp

and we find from dimensional arguments a character-

100 million years. Thus, within perhaps a factor of three, we find that in
100 million years the temperature at the center of the cylinder will heat up
by about one-half of the difference between the original temperature at the
center and the temperature at the surface of the cylinder. This long time

is required since heat transfer by conduction or radiative transfer is a

very slow process compared to heat transfer in the earth by convection.

(the k = .006 above was a total thermal conductivity, including the average
effects of both of these processes). Thus if the sinker sank at a rate of

1 cm/year, it would require only 10 million years for the cylinder to sink

to a depth of 100 km and the temperature change due to conduction inward

from the surrounding medium would be negligible in this short time. Since the
surface temperature is about 0°C and the temperature at 100 km is about

1500 °C in several proposed temperature models, a temperature difference of
1000 °C between the sinker and its surroundings could possibly exist although
a much smaller temperature difference is more likely. 1If the density excess
were due to linear thermal expansion with a volume expansion coefficient of
X =3 x 10-5/°C, a 1000°C temperature difference would produce only a 3 %
change in the density, not the 107, change which we require. If however
there is a phase transition, which could occur here at a much shallower depth
than normal if the temperature here were several hundred degrees cooler than

average, then this 109, density excess is within reason.



-51-

This required 109, excess density could be reduced considerably if
the sinker were at a greater depth than the 80 km which we found above with
the simple viscous model since 1f the sinker were deeper the excess mass
could be spread out more in a greater volume. We have seen (figure 6) that
if the viscosity near thé surface is very much greater than the viscosity
at the depth of the sinker, then the shape of the curve Fz(x) is changed
somewhat, We have used the expression for Fz(x) resulting from the uniform
viscosity case, but if we used the form of Fz(x) corresponding to say an
upper layer with a viscosity ten times that below and the upper layer having
a thickness one half of D, then the depth of the sinker for which the gf(x)
curve best fits the "trench only" will be deeper than 80 km. The top part
of figure 11 shows gf(x) calculated for a mass of ML = 1.7 x 1013 gm/cm at
a depth of D = 80 km for two choices of the shape of Fz(x). Case (a) is
for a thick layer on top having a viscosity ten times that below (R = 1/10,
d/D = 1/2) and case (b) is for the simple uniform viscosity (R = 1). In the
lower part of this figure, case (b) is the same as above (a mass at 80 km
and the simple formula) and in case (¢) the depth and mass of the layered
model (R = 1/10, d/D = 1/2) have been adjusted to closely match this simple
curve. This new fit gives a mass which is 87 %, of the original mass aﬁd a
depth which is 25 %, greater than the original 80 km, or 100 km. Notice that
we could have chosen R = 1/100 or 1/1000 with very little additional changes
in the shape of Fz(x). Further, the effects of the ratio d/D seem to be
approaching a limit (see figure 6). We have introduced an additional set of
parameters into the model, but the effect of these changes is very slight.
We would predict gssentially the same mass beneath the surface with almost
any variation of R and d/D, and we would have a range of depths D varying

about 30 %, depending on the choice of R and d/D.
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Figure-11l. A comparison of the free air anomaly calculated with
the simple viscous model and with the two layer model with R = .1
and 4/D = .5.

(a) Simple viscous model, D = 80 km, M = 1.7 x 1013 gm/cm

(b) Two layer model, D = 80 km, M = 1.7 x 1013 gm/cm

(c) Two layer model, D = 100 km, M = 1.5 x 1013 gm/cm
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We shall accept the results of the modified simple viscous model and
suppose there is a cylindrical mass of 1.5 x 1013 gm/cm located 100 km
beneath the horizontal distance +170 km, If this is so then the Moho M
as shown in figure 7 is incorrect and we must find the new bottom profile
M'. A two-dimensional gravity anomaly program as described by Talwani,
Worzel, and Landisman (1959) was used. Only two changes were made in the
structure shown in figure 7: a mass was added at 100 km and the bottom
surface of the 3,0 gm/cm3 layer was adjusted so that the gravity anomaly of
the difference between M and M' canceled the attraction of the deep mass.

It was required that the curve M' have a depth of 11 km at +320 km. Excepting
the constant offset introduced by requiring the curve to pass through a

given point, the residuals of the final fit were less than 2 mgal, The
resulting bottom curve M' is shown in figure 12(a). The original curve M

is also shown for reference.

There is considerable discrepancy between M' and the seismic depths
beneath the Venezuelan Basin and the following changes were made in the
assumed upper structure in order to bring the gravitatiénally calculated
Moho and the seismic Moho more in line. There is some freedom in the location
of the layer interfaces beneath the Venezuelan Basin and each of these was
moved upward approximately .5 km., The narrow finger of mantle reaching up
at +100 km is probably not real but rather reflects an error in the thick-
ness of the upper layers. The 3.8-5.5 km/sec boundary was adjusted between
+120 km and +60 km in a manner to remove the need for this narrow finger of
mantlé. The Moho was recalculated after these changes in the upper layers
at +100 km and between -100 km and -200 km were made. The new bottom profile
was called M" -- it is shown in figure 12(b).

The Moho under the Venezuelan Basin is still too shallow. We may

further lower the profile M" here if we remove a simplification made by
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cylindrical mass of 1.5 x 1013 gm/cm at 100 km depth
beneath horizontal distance +170 km. (a) The upper
structure is the same as shown in figure 7. (b) The
upper structure has been changed near +100 km and
between ~100 and -200 km.
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Talwani, Sutton, and Worzel. These authors assumed there were only five
different layers having velocities 8.2, 7.0, 5.5, 3.8, and 2.1 km/sec and
densities 3.4, 3.0, 2.7, 2.4, and 2.0 gm/cm3 respectively. Tihese velocities
are not the velocities observed beneath the Venezuelan Basin. Cross-sections
summarizing the seismic results given in Officer et al (1959) (cross-sections
1 and 3) show a difference between the Caribbean and Atlantic side of the
Puerto Rico Trench., Velocities of 8.1, 7.2, and 6.3 km/sec are more typical
of this region than 8.2, 7.0, and 5.5 km/sec. From the Nafe and Drake
velocity-density curve given in figure 2 of Talwani, Sutton, and Worzel
(1959), these velocity differences correspond to density differences of -.03,
+.07, and +.17 gm/cm3 in the mantle, high velocity basement ("7.0") and
low velocity basement ("5.5"). If Talwani, Sutton, and Worzel had used these
greater densities for the "5.5" and "7.0" layers, the Moho M would have been
placed 2 kilometers deeper than shown in figure 7. The extra density in
these layers would have been compensated for by having a thicker crust.
Thus if we make this correction to M (add 2 kilometers) and hence to M'
and M", the resulting gravity curve for the Moho will pass through the
points determined seismically. 1If the density beneath the Moho in the
Venezuelan Basin were decreased as indicated by the 8.1 km/sec velocity,
the amount of downward displacement of the Moho as described above would be
lessened. 1If this lighter mantle were 10 km thick, this correction would be
reduced from 2 km to 1 1/3 km.

We now look at the central portion of the figure; the seismic depth
to the Moho as determined by lines 12, 46, and 20, Seismic profile 20,
1956 cruise, as given in Officer et al, 1959, places an interface between
the 5.5 km/sec layer and a 6.8 km/sec layer at 18 km and an interface

between the 6.8 km/sec layer and a 8.4 km/sec layer at 22 km. The 6.8
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km/sec layer was "masked"; that is a straight line repfesenting this layer
was not observed in the travel time diagram but such a layer could be present.
There is scatter in the travel time diagram and the 8.4 km/sec velocity
depends critically upon which data points the straight line is drawn through.
Another line may be drawn through to fit these points which gives a 7.2
km/sec velocity. Thus profile 20 could be reinterpreted to give a trans-
ition from 5.5 km/sec to 7.1 km/sec at a depth of 18 km with the Moho
unobserved., This seismic profile has more scatter in the observations de-
termining the deepest layer than most of the other profiles and it cannot
be used as strong evidence against having the Moho deeper than 22 km,.
Profiles 12 and 46 are presumably accurate measurements of the Moho.
The depth to the Moho predicted by the viscous model (figure 12) is in
disagreement with these points. This contradiction cannot be removed unless
horizontal gradients in the viscosity are introduced. If we remove the
symmetry of the problem -- that is let the deep mass be further to the
south, say at +140 km, and the vertical load near the surface still be
centered about +170 km =-- then the Moho so determined could pass through the
points given by profiles 12 and 46 with little change in the rest of the
picture.
To summarize, we may dynamically account for the existence of the
Puerto Rico Trench by supposing there is a cylindrical sinker approximately
80 or 100 km beneath the trench. We have seen that the variation of viscosity
with depth is unimportant, especially if the viscosity increases towards the
surface. If we calculate the magnitude of the stresses involved from formula
(35), we find that the shear stresses have a maximum of roughly 500 bars and
that we have stresses greater than 10 7o of this over several hundred

kilometers. These large stresses should exceed any brittle strength of the
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material and viscous type flow result. If the driving mass is 1.7 x 1013
gm/cm and is distributed in a cylinder with a radius of 40 km, then this
cylinder must have a density of .3 gm/cm3 or 10 7o greater than the
surrounding density. If a driving mass of 1.5 x 1013 gm/cm is distributed
in a cylinder with a radius of 50 km, then the average density excess is

5 %, greater than the surrounding material. There is probably not a sharp
transition between crustal material of density 3.0 gm/cm3 and mantle material
of density 3.4 gm/cm3, but if there is the Moho would have a shape roughly
as shown in figure 12(b). The upward bend in M" near +100 km probably
results from an error still reméining in the assumed structure of the upper
crust; the discrepancy between M" and the_geismic measurements beneath the
Venezuelan Basin can be accounted for by changing the density of the upper
layers.

We now turn to the Mid-Atlantic Ridge. Figures 13, 14, and 15 show a
map of the region considered, gravity anomalies and the crustal structure
of the ridge, and some proposed crustal models. These three figures are
from Talwani, Le Pichon, and Ewing (1965). In Puerto Rico the seismic
crustal data was lacking in the critical region from +100 km to +200 km
and only free air gravity anomalies were used to locate the size and depth
of the sinker. 1In the Mid-Atlantic theré is sufficient crustal structure
information so that the vertical load and subcrustal anomaly may be used
as well as the free air anomaly. The depth to the Moho is lacking within
+ 300 km of the center of the ridge, but crustal data in the 300 to 1000
km range will be useful.

The top part of figure 16 shows the Bouger anomaly and the subcrustal
anomaly. The Bouger anomaly shown was obtained by drawing a smooth curve

through the Bouger curve shown in figure 14 and recording the value so found
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Tig. 1. Location of seismic refraction measurements on north mid-Atlantic ridge between
latitudes 20°N and 50°N. The track of Vema cruisc 17 during which continuous gravity meas-
urcments were made is also shown.

Figure 13. (From Talwani, Le Pichon, and Ewing; 1965)
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Tig. 5. Three possible crustal models across the north mid-Atlantic ridge which satisfy
gravity anomalics and are in accord with scismic refraction data. In all three moadels the
anomalous mantle found scismically under the crest of the ridge is assumed to underlic the
normal mantle under the flanks of the ridge. In case I the anomalous mantle is assumed to
have a uniform density; in case II its density is assumed to increase downwnard, and in case
III the material constituting the anemalous mantle is assumed to be lighter near the axis &
the ridge.

Figure 15.
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every 100 km. A constant was subtracted to make the curve zero at +1200 km.
The subcrustal curve was found by adding a correction to the Bouger curve
which depends on the thickness of the crustal layers below. The depths to
the interfaces were taken every 100 km from figure 14 and densities of 2.6,
2.9, 3.4, and 3.15 gm/cm3 were assigned to the layers (the same densities
as shown in figure 15). It was assumed that the anomalous 3.15 gm/cm3
layer ended at 11.5 km for .the purpose of this calculation. If this 3.15
layer extended deeper than 11.5 km in the range =400 km to +300 km, the
curve g would be flatter in the center or even bend up the opposite way.
That is, if there is more light material near the surface, the subcrustal
anomaly curve B would be less negative showing that less light material

is needed down deep.

In the models proposed by Talwani, Le Pichon and Ewing (figure 15), it
is assumed that the crustal structure is as shown in figure 14 and that all
differences between the observed gravity and the gravity anomaly computed
using this crustal structure are causéd by masses below. They have been
forced to place these subcrustal masses at about 20 km depth because they
require the subcrustal mass to account for all of the residual anomaly. In
particular, at -650 km they have a sharp change in the thickness of their
subcrustal layer which is to account for the sharp change in the Bouger
anomaly (or gs) at =650 km. If we look at the structure shown in figure
14 we see that this change in 8y is caused by the seamounts at =650 km.

The depth to the Moho shown here was determined by seismic profiles A180-1
and Al80-2 and we see from the map in figure 13 that these depths were
measured more than 500 km to the northeast. There is probably a root under

this seamount and although gy (water-basement) does have a sharp change at
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=650 km, 8, (all crust including root) should not have this sudden change.
It will be assumed from here on that the departures of g in the range from
-700 km to -400 km aré caused by errors in the assumed crustal structure.
We assume that if the root under the seamount were inserted and other changes
made between -600 km and -400 km, then the resulting g, curve would be
symmetric about the center.

If we allow the possibility of changes in the profiles of the crustal
structure, then the subcrustal mass deficiency need not be around 20 km
down. For example, all of the mass deficiency may be concentrated in a
line source 400 km deep. Figure 16(b) shows 84 and the gravity due to a
source at 400 km; figure 16(c) shows the difference between these two curves.
1f we examine only the right hand side of figure 16(c), we see that a single
mass at 400 km could well account for most of the mass deficiency beneath the
ridge. The approximately 20 mgal fluctuations in the "gS - 400" curve could
be accounted for by irregularities in the profile of the Moho. With the
density contrast of 2.9 - 3.4 gm/cm3; a change in the depth of the Moho
alone of 1 km would result in a 20.9 mgal change in the gravity anomaly. If
" both the Moho and the 2.6 - 2.9 gm/cm3 interface changed by 1 km, the gravity
anomaly would change by 33.5 mgal. The possibility of bottom fluctuations of
this magnitude cannot be discounted, at least not until many more seismic
measurements have been made on the ocean floor. Thus the light mass required
to counterbalance the gravitational attraction of ﬁhe ridge itself may be
at almost any depth. The distribution at about 20 km shown in figure 15 and
the single line source at 400 km are extreme cases: :the lighter mass is
more likely to be somewhere in between.

From the subcrustal anomaly we know there 1is lighter than average

material beneath the ridge, but from this anomaly alone we cannot specify
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Figure 16. Gravity anomalies over the Mid-Atlantic Ridge.

(a)
(k)
(c)

The Bouger anomaly and the subcrustal anomaly as

described in the text. '

The subcrustal anomaly and the anomaly computed by assuming
a line source 400 km beneath the center of the ridge.

The difference between the curves shown in (b).
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the density pattern with depth. However if we trust the viscous model, we
may find the mass deficiency below which will maintain the ridge in its
elevated state. Figure 17 shows the subcrustal anomaly and the vertical
load and free air anomaly computed with the simple viscous model for each

of the density distributions shown in figure 18. In (a) we have the effects
of a cylindrical source 400 km beneath the center of the ridge. In (b) we
have taken that mass distribution at 200 km for which the B will exactly
match the 8 of a cylindrical mass at 400 km. The 8 is the same in (a) and
(b); the Fz and gy are different. 1In (c), we have chosen a mass distribu-
tion at 100 km which closely fits the observed g (or rather the right hand
side of 84 since we are ignoring the left hand side). The computed values
of g are too large in this model and there is considerable unknown in 8
since we do not know the depth of the 3.15 gm/cm3 layer in the center of

the ridge; and so in (d) we have chosen a mass pattern at 100 km depth which
better fits &8¢ in the center of the ridge and is the same as before for the
outer flanks., In (e), we have the saﬁe mass distribution except it has been
raised from 100 km to 80 km. Notice how this reduces the free air anomaly
by about 20 7 .

The right hand side of these symmetric mass distributions are shown in
figure 18. 1In parts (b) through (e), the density deficiency is .03 gm/cm3
or % less than the average density at this depth. For the purpose of the
calculations, it was assumed that all of the mass was concentrated at 200,
100, or 80 km. The thickness of the light layer was drawn in after choosing
a density difference between the lighter layer and its surroundings. The
values of FZ and 8¢ shown in figure 17 were calculated with the simple

viscous model. If the modified viscous model had been used, partially
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taking into account the increase of viscosity towards the surface, the
masses would have been slightly smaller and about 20 7o deeper.

In conclusion, the mass inhomogeneities which drive the Mid-Atlantic
Ridge are at about the same depth as those which drive the Puerto Rico
Trench -- 100 km. The density deficiency of this driver is about 1%,
beneath the ridge; this could arise from a temperature difference if the
mantle beneath the ridge were about 300°C warmer than average at this
depth., This contrasts to the Puerto Rico Trench where the density excess
of the driver was 5% or more -- a magnitude which could arise only from
a phase change or chemical differentiation. The horizontal motion of the
surface of the ridge cannot be predicted since horizontal features depend
critically upon the assumed vertical layering of viscosity, but the shape
of the ridge and the magnitude of the free air anomaly can be predicted by
the viscous model in a manner independent of detailed assumptions of the

viscosity pattern.
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Figure i7. The observed values of the subcrustal anomaly gg, the
vertical load F,, and the net free air anomaly gg, of the Mid-Atlantic
Ridge and theoretical values computed from a model.

(a)

(b)

()

(d)

(e)

In this model all of the mass deficiency was concentrated in a
line source at a depth of 400 km. See figure 18(a).

The mass deficiency was distributed at a depth of 200 km in a

manner to exactly match the g of the line source at 400 km.
. 8

See figure 18(b).

The mass deficiency was distributed at a depth of 100 km in a

manner to closely match the observed 8 points. See figure
18(c) . '

The mass deficiency was distributed at a depth of 100 km. The
amount of mass is less in the central portion in order to more
closely fit the observed g, rather than the more speculative

: f
8- See figure 18(d).

The same as above, except at 80 km. See figure 18(e).
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Figure 18. The two-dimensional mass distributions which
produce the effects shown in figure_17. The mass deficiency
of the cylinder in (a) is 6.9 x 1013 gm/cm. The density

deficiency within the shaded areas of the last four models
is .03 gm/cm3 or 1% less than the surrounding material.
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